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Abstract

The dynamic stability of straight cantilevered viscoelastic pipes conveying inviscid fluid and lying on an elastic

foundation of variable modulus is studied. The corresponding eigenvalue problem is solved using both Galerkin and

shooting methods. It is found that certain combinations of the pipe parameters (the elastic foundation modulus, mass ratio

and internal damping coefficient) can destabilize the pipe.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid-conveying pipes are widely used in various industrial branches. Sometimes, their role is simply to
transport fluids. In other cases, they function as basic structural components as well. In both cases, however,
the dynamic stability of the pipes is crucial for the proper operation of the entire equipment.

Being acknowledged to be of such a significant importance, the dynamic stability of fluid-conveying pipes
has been extensively studied in the past 40 years (see, e.g., the comprehensive book [1] by Paı̈doussis). In
general, it has been established that if an initially straight pipe conveys inviscid fluid with a relatively low
velocity, then each disturbance applied to that pipe causes vibration diminishing with the time. In this case, the
initial equilibrium state of the pipe is referred to as a stable one. However, for fluid velocities higher than a
certain value (called critical flow velocity) even small disturbances could result in non-diminishing vibration.
Under these circumstances, the pipe equilibrium state is referred to as an unstable one.

Usually the pipes are supported at the ends but, for different reasons, they are often supported along the
span too. From mathematical point of view, these internal supports could be described as a continuous
foundation the pipe is resting on. Surprisingly, in spite of the intuitive expectation, it turns out that a
foundation does not always stabilize a pipe. The same holds true with respect to the internal damping as well.

In 1978, Becker et al. [2] considered the dynamic stability of cantilevered viscoelastic pipes on foundations
of constant modulus for several small mass ratios. Later, Lottati and Kornecki [3] studied the same problem
but for all admissible values of the mass ratio and several different values of the internal damping coefficient.
In these works, it has been established that Winkler foundations of constant modulus have a stabilizing effect,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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as expected (see also Ref. [4] by Doare and de Langre). However, the internal damping has been found to have
either destabilizing or stabilizing effect on the pipe depending on the mass ratio. Elishakoff and Impolonia [5]
and Djondjorov [6] have studied the dynamic stability of cantilevered pipes on foundations of constant
modulus that support only a part of the pipe span. They have found that such foundations could either
destabilize or stabilize the pipe depending on the position and length of the foundations. Djondjorov et al. [7]
and Djondjorov [8] have examined cantilevered pipes on Winkler foundations whose modulus is a certain
sixth-, second- or first-order polynomial. They have concluded that all such foundations stabilize the pipe.

In Refs. [2,3,5], the authors have determined critical flow velocities on the basis of the dispersion equations
resulting from the respective differential equations. Such an approach is possible when the differential
equations considered are of constant coefficients but one could not make use of this method with equations of
variable coefficients. For this reason, numerical methods (mostly Galerkin method) have been applied in the
aforementioned papers concerning pipes on foundations of variable modulus. For further details on the
methods of analysis and some other features of the influence of the elastic and viscoelastic foundations on the
dynamic stability of fluid-conveying pipes we refer to the basic book [1] and recent review [9].

The aim of the present note is to analyse the effect of the internal damping and the magnitude of the
foundation modulus on the dynamic stability of cantilevered viscoelastic pipes lying on elastic foundations of
Winkler type with variable modulus. For that purpose, a computational procedure based on the Galerkin
method is developed for determination of the eigenfrequencies of the pipes and the critical flow velocities, the
results obtained being then verified by the shooting method.
2. Basic problem

The small transverse vibration of an initially straight viscoelastic pipe conveying inviscid fluid and lying on
an elastic foundation of Winkler type is governed by the partial differential equation (see, e.g., Refs. [1–3,5])
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where uðz; tÞ denotes the transverse displacement of the pipe axis, z is the coordinate along this axis, t is the
time, E is Young’s modulus of the pipe material, I is the inertia moment of the pipe cross-section, l is the
internal damping coefficient related to the viscosity of the pipe material, m and M are the masses per unit
length of the pipe and the fluid, respectively, U is the flow velocity, and cðzÞ is the variable foundation
modulus.
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Eq. (1) takes the form

q4w

qx4
þ Z

q5w

qx4 qt
þ v2

q2w
qx2
þ 2v

ffiffiffi
b

p q2w
qx qt

þ
q2w
qt2
þ kðxÞw ¼ 0. (2)

Let the pipe under consideration be of cantilevered type, i.e., its end x ¼ 0 is fixed and the other one, x ¼ 1, is
free. Then, the boundary conditions read
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In this study, solutions to the boundary value problem (2), (3) of the form

wðx; tÞ ¼ yðxÞ expðotÞ (4)



ARTICLE IN PRESS
V.M. Vassilev, P.A. Djondjorov / Journal of Sound and Vibration 297 (2006) 414–419416
are sought. Substituting expression (4) for the function wðx; tÞ in Eq. (2) and boundary conditions (3), one
obtains the two-point boundary value problem

ð1þ ZoÞy0000 þ v2y00 þ 2v
ffiffiffi
b

p
oy0 þ o2yþ kðxÞy ¼ 0, ð5Þ

yjx¼0 ¼ 0; y0jx¼0 ¼ 0; y00jx¼1 ¼ 0; y000jx¼1 ¼ 0, ð6Þ

where the prime indicates differentiation with respect to x. Actually, this constitutes a non-self-adjoint
eigenvalue problem, the eigenvalue parameter being the frequency o.

Here, the above eigenvalue problem is solved by a standard Galerkin method (see, e.g., Ref. [10]), an N-term
approximate solution to it being expressed as a linear combination of the first N well-known eigenfunctions of
a cantilevered elastic pipe without flow and foundation, i.e., Z ¼ 0, v ¼ 0, kðxÞ ¼ 0 (see, e.g., Refs. [1,7]).
Consequently, the eigenfrequencies are determined as the roots oi ði ¼ 1; 2; . . . ; 2NÞ of a 2Nth-order
polynomial whose coefficients depend on Z, b, v and some other parameters describing the foundation
considered. The critical flow velocities vcr are determined as the lowest values of v at which this polynomial has
a root with non-negative real part, the rest of the pipe parameters being kept fixed. Once the values of a critical
flow velocity and the corresponding eigenfrequency are obtained for a given number N, a Maple
implementation of the shooting method (package shoot1) is applied to check the existence of a sufficiently
accurate approximate solution to the respective two-point boundary value problem (5), (6). The results
presented below are achieved using 10 terms in the Galerkin approximation of the considered eigenvalue
problems, i.e. N ¼ 10. The values of the critical flow velocities and the corresponding eigenfrequencies
computed at this level of Galerkin approximation turned out to provide an excellent accuracy of the
approximate solutions obtained then by the shooting method, namely: each such solution whose maximal
norm is about one satisfies the equation and boundary conditions within an absolute error of order less
than 10�10.
3. Numerical results

First, in order to test the aforementioned computational procedure, the critical flow velocities of several
well-known problems concerning dynamic stability of cantilevered pipes without foundation have been
determined. The results of our computations, shown in Fig. 1, are in an excellent agreement with the earlier
results presented in Refs. [1, Fig. 3.30] and [3, Fig. 8] up to the limiting case b! 0, Z ¼ 0 to be discussed
below.

Let us first note that in the vicinity of b ¼ 1, for 0:919pbp0:994, the 10-term Galerkin approximation,
verified by the shooting method, predicts that the vcr curve corresponding to Z ¼ 0 (the thick curve in Fig. 1(a))
contains a new S-shaped domain in addition to the ones presented in Refs. [1, Fig. 3.30] and [3, Fig. 8]. This
observation is in accordance with the remark in the Paı̈doussis’ book [1], ‘‘As b! 1, more and more S-shaped
jumps are encountered’’. Let us recall that the so-called S-shaped domains are associated with an instability-
restabilization-instability sequence (see Ref. [1]) and that Mukhin [12] has shown that at b ¼ 1 the critical flow
velocity tends to infinity.

As for the vicinity of b ¼ 0, the results of our computations shown in Fig. 1 confirm the curves for
Z ¼ 0:001, 0.01 and 0.1 given in Ref. [3, Fig. 8]. However, the curve corresponding to Z ¼ 0 is not confirmed.
The matter is that for

ffiffiffi
b

p
o0:1 this curve in Ref. [3] is a straight horizontal line at vcr ¼ 4:18 but in the vicinity

of b ¼ 0 it turns rapidly upward and smoothly goes to vcr ¼ 4:48 (see also formulae (16) in Ref. [3]). Our
computations show that when

ffiffiffi
b

p
approaches zero with positive values, the critical flow velocity is vcr ¼ 4:19

and the respective curve in Fig. 1 never turns upward for b down to 10�24. Therefore, we can conclude that at
Z ¼ 0, the limit value of the critical flow velocity when b! 0, b40 is vcr ¼ 4:19, whereas at b ¼ 0 it is known
to be vcr ¼ 4:48 (see Refs. [1,3]). For pipes without foundation, the critical flow velocity depends only on the
parameters b and Z, that is vcr ¼ vcrðb; ZÞ, and hence the above conclusion means that the function vcrðb; 0Þ is
1This package can be downloaded from the website of the first author of Ref. [11] (Douglas B. Meade) at http://www.math.sc.edu/

meade/maple/Shoot9/Shoot9.zip.

http://www.math.sc.edu/meade/maple/Shoot9/Shoot9.zip
http://www.math.sc.edu/meade/maple/Shoot9/Shoot9.zip
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Fig. 1. Critical flow velocity vcr of a cantilevered pipe without foundation ðk ¼ 0Þ as a function of the mass ratio b at the following four

values of the internal damping coefficient Z: (a) Z ¼ 0 (thick curve), Z ¼ 0:001 (curve 1), Z ¼ 0:01 (curve 2), Z ¼ 0:1 (curve 3);

(b) magnification of the domain marked by the dashed rectangle in (a).
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Fig. 2. Variation of the critical flow velocity vcr of a cantilevered pipe without foundation ðk ¼ 0Þ: (a) for Zp
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discontinuous at b ¼ 0 and the jump is

vcrð0; 0Þ � lim
b!0;b40

vcrðb; 0Þ ¼ 4:48� 4:19 ¼ 0:29.

This observation contradicts the idea that the critical flow velocity smoothly tends to vcr ¼ 4:48 when
b! 0;b40.

From theoretical point of view, it seems natural to study also the continuity of the function vcrðb; ZÞ at
b ¼ 0; Z! 0, Z40. Similarly to the previous case, this function turns out to be discontinuous. Indeed, at
b ¼ 0, Z! 0, Z40 the critical flow velocity tends to vcr ¼ 3:30, whereas at Z ¼ 0 it is vcr ¼ 4:48. This jump

vcrð0; 0Þ � lim
Z!0;Z40

vcrð0; ZÞ ¼ 4:48� 3:30 ¼ 1:18

is even bigger than the previous one.
Finally, in order to clarify the behaviour of the function vcr ¼ vcrðb; ZÞ in the close neighbourhood of the

point b ¼ 0, Z ¼ 0, critical flow velocities for 0o
ffiffiffi
b

p
p10�3 and 0oZp10�3 are computed and the results are

shown in Fig. 2. Surprisingly, it turned out that for any pair of such small values of the parameters Z and b, the
critical flow velocity vcr depends only on the ratio of these parameters. Fig. 2(a) and (b) present the variation
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of the critical flow velocity for Zp
ffiffiffi
b

p
p10�3 as a function of the ratio Z=

ffiffiffi
b

p
and for

ffiffiffi
b

p
pZp10�3 as a

function of the ratio
ffiffiffi
b

p
=Z, respectively. It is seen that for such small values of the parameters Z and b, the

critical flow velocities vary over the relatively large range 3:30–4:48.
The computations show that when the ratio of Z and b is such that vcro4:48, for flow velocities between vcr

and 4:48, the real part of the corresponding eigenfrequency being positive is of vary small magnitude. For
instance, for Z ¼ 10�6,

ffiffiffi
b

p
¼ 10�8, the ratio is

ffiffiffi
b

p
=Z ¼ 0:01, the critical flow velocity is vcr ¼ 3:32 and for flow

velocities up to 4:47, the real part of the corresponding eigenfrequency is less than 10�3, whereas at 4:48 it is
0:3 and rapidly grows beyond 4:48. This means that although the flow velocities up to 4:47 are all critical, a
substantial growth of the vibration amplitude indicating the pipe instability can be observed after a long time,
which in this case exceeds 103.

On account of the results presented in Fig. 2, one can conclude that each value between 3:30 and 4:48 may
be considered as a limit value of the critical flow velocity as Z! 0, b! 0. Indeed, let v0 be such that
3:30pv0p4:48. Then, it corresponds to a certain ratio r0 ¼ Z=

ffiffiffi
b

p
in Fig. 2(a) if v0p3:8 or r0 ¼

ffiffiffi
b

p
=Z in

Fig. 2(b) if v0X3:8. Hence, considering any two sequences of values Z1, Z2; . . . and b1, b2; . . ., of the parameters
Z and b both tending to zero and such that the ratio between Zi and

ffiffiffiffi
bi

p
is r0, the corresponding sequence of

critical flow velocities vcrðbi; ZiÞ tends to v0. This conclusion casts doubt on the applicability of the model of a
fluid-conveying viscoelastic cantilevered pipe based on Eq. (1) for values of the mass ratio and damping
parameters b and Z smaller than 10�3.

Consider now elastic foundations whose modulus is a second-order polynomial of the form

kðxÞ ¼ 4hx 1� xð Þ; h ¼ const; h40,
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Fig. 3. Critical flow velocity vcr of a cantilevered pipe as a function of the foundation parameter h at values Z ¼ 0 (thick curve), Z ¼ 0:001
(curve 1), Z ¼ 0:01 (curve 2), Z ¼ 0:1 (curve 3) of the internal damping coefficient at mass ratios: (a) b ¼ 0:0001, (b) b ¼ 0:04,
(c) b ¼ 0:1296, (d) b ¼ 0:49.
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i.e., it is a concave function with a maximal value h at the middle of the pipe span vanishing at the pipe ends.
This foundation modulus differs from those considered earlier (see Ref. [7]) in that it depends only on one
parameter h. Since the purpose here is to study the influence of an elastic foundation on the dynamic stability
of elastic and viscoelastic pipes, the consideration of such a one-parameter class of foundation moduli makes it
easier to deduce whether hardening of the foundation stabilizes the pipe.

First, in order to study this influence for small b, the cases b ¼ 0:0001 and 0.04 are considered. The results
for four different values of the internal damping coefficient are shown in Fig. 3(a) and (b), respectively.
Apparently, in the case Z ¼ 0:1 each foundation stabilizes the pipe, but in the other cases a foundation of small
h destabilizes the pipe whereas foundations of larger h are stabilizing ones. For instance, when b ¼ 0:04, the
elastic cantilever Z ¼ 0ð Þ is destabilized for foundations with ho4680, the maximal destabilization effect being
achieved at h ¼ 1220 where vcr ¼ 3:75 that is about 85% of the critical flow velocity vcr ¼ 4:39 at h ¼ 0. Thus,
due to the influence of an elastic foundation of variable modulus, the critical flow velocity of an elastic
cantilevered pipe can be reduced by approximately 15%.

Next, pipes of comparatively large mass ratio are considered. The results for pipes with b ¼ 0:1296 are
displayed in Fig. 3(c). It is seen that at the largest value of the internal damping coefficient Z ¼ 0:1 considered
here, all foundations have a strong stabilizing effect except for the fold in the vicinity of h ¼ 500. Stabilizing
effect is observed for Z ¼ 0:01 as well. It should be noted also that the curves corresponding to Z ¼ 0 and 0.001
contain S-shaped domains in the intervals 680php1600 and 790php1170, respectively.

Finally, the critical flow velocities for a pipe with b ¼ 0:49 are displayed in Fig. 3(d). It is seen that in the
cases Z ¼ 0, 0.001 and 0.1 all foundations considered have a strong stabilizing effect. As for the case Z ¼ 0:01,
only foundations such that 1060oho1800 destabilize the pipe in the sense that the critical flow velocities for
such values of the foundation parameter h are less than the critical flow velocity for h ¼ 1060.
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